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Abstract

Estimation of NMR spectral parameters, using e.g. maximum likelihood methods, is commonly based on the assumption of

white complex Gaussian noise in the signal obtained by quadrature detection. Here we present a statistical analysis with the purpose

of discussing and testing the validity of this fundamental assumption. Theoretical expressions are derived for the correlation

structure of the noise under various conditions, showing that in general the noise in the sampled signal is not strictly white, even if

the thermal noise in the receiver steps prior to digitisation can be characterised as white Gaussian noise. It is shown that the noise

correlation properties depend on the ratio between the sampling frequency and the filter cut-off frequency, as well as the filter

characteristics. The theoretical analysis identifies conditions that are expected to yield non-white noise in the sampled signal. Ex-

tensive statistical characterisation of experimental noise confirms the theoretical predictions. The statistical methods outlined here

are also useful for residual analysis in connection with validation of the model and the parameter estimates.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The statistical properties of the noise in a given signal

have important implications for modelling of the signal

and for estimation of its spectral parameters. As an
example, the maximum likelihood (ML) method ex-

plicitly incorporates in the model the statistical distri-

bution of the observations. In estimating model

parameters, all relevant available information must be

used—not only because this yields more precise and ac-

curate parameter estimates [1], but also because arbi-

trary exclusion of some information would permit

equally arbitrary conclusions to be drawn [2]. Therefore
it is essential to include in the model any available in-

formation about the noise of the measured signal. ML

methods have been applied successfully to estimate

NMR spectral parameters [3–11], and is an alternative

to Fourier transformation of the time domain data

[1,12]. The complexity of the model required to describe

the NMR signal is directly dependent on the statistical

properties of the measurement noise, as outlined below

(cf. Eqs. (2) and (3)). To the best of our knowledge, the

literature on ML estimation of NMR spectra exclusively

involves models based on the assumption that the
complex signal includes white complex Gaussian noise.

More specifically, the assumption is that the following

conditions on the noise sequences in the real and

imaginary channels are fulfilled: they are mutually un-

correlated; each of them is uncorrelated; they have equal

variance; and they have a joint Gaussian distribution.

The validity of this fundamental assumption is appar-

ently taken for granted, and is very rarely discussed [4].
Statistical models appropriate for ML and non-linear

least-squares estimation in cases where the noise is col-

oured have previously been considered briefly [11]. Also,

Bayesian approaches have been presented that may al-

low the noise probability distribution to be quantified

and included in the analysis in a more formal manner

[13–15]. However, the notion that the noise is uncorre-

lated clearly dominates the literature.
In the field of MRI, the extent of noise correlation

between multiple receiving coils has been addressed
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[16,17], and a systematic empirical investigation of the
statistical properties of the noise has been reported for

this case [18]. High-resolution NMR spectroscopy is

different from MRI in that the normal NMR probe

configuration includes a single receiving coil, although a

design using two orthogonal receiving coils has also

been described [19]. Here, we limit our analysis to the

case of a single receiving coil, for which quadrature

detection is achieved by splitting the signal into two
parallel channels (‘‘real’’ and ‘‘imaginary’’), and mixing

these with two reference signals that are orthogonal in

phase, but otherwise identical [20]. Since the same noise

is given as input to the real and imaginary channels, it

may not be immediately obvious that the noise se-

quences in the two channels should be uncorrelated after

mixing with the high-frequency reference signal and

subsequent low-pass filtering and sampling. Further-
more, it is not clear that the assumptions about the

correlation properties of the noise will hold throughout

the signal processing scheme outlined above, even if the

noise in the signal emanating from the receiving coil may

be adequately represented by a Gaussian distribution.

Here we address the validity of these fundamental as-

sumptions in some depth. Our analysis addresses the

situation where the noise input is stationary. The com-
plementary problem of the transient response to a

noiseless signal has been analysed previously [21].

The interferogram is commonly modelled as a sum of

exponentially damped complex sinusoids with additive

Gaussian white noise:

Sn ¼ mn þ Yn ¼
Xp

k¼1

Ake
i/keð�akþi2pfkÞtn þ Yn;

n ¼ 1; 2; . . . ;N ; ð1Þ
where Ak > 0 is the amplitude, /k the phase, ak P 0 the

damping factor, and fk the frequency of sinusoid num-
ber k. The variables Yn are independent, identically dis-

tributed (IID) complex Gaussian random variables with

zero mean and uncorrelated real and imaginary parts,

Cov½ReYn; ImYn� ¼ 0, each with variance r2, so that

Var½Yn� ¼ EjYnj2 ¼ 2r2, where Cov, Var, and E denote

the covariance, the variance, and the mathematical ex-

pectation, respectively. Quite generally, if the noise se-

quence Y ¼ ðY1; . . . ; YN ÞT
, where the superscript T

denotes matrix transposition, is complex Gaussian with

mean m and covariance matrix C ¼ E½ðY�mÞ
ðY�mÞH �, the likelihood function can be written as

Lðy;m;CÞ ¼ 1

pNdetC
exp½�ðy�mÞHC�1ðy�mÞ�; ð2Þ

where y ¼ ðy1; . . . ; yN ÞT
is the sequence of experimental

data points, the superscript H denotes the Hermitian
transpose of a matrix, and detC denotes the determinant

of the matrix C. Irrespective of the time-correlation

properties of the noise, this likelihood model implies

that the real and imaginary parts of Yn are uncorrelated,

that is Cov½ReYn; ImYn� ¼ 0 and Cov½ReYm;ReYn� ¼
Cov½ImYm; ImYn� for all m and n; in particular, this

means that Var½ReYn� ¼ Var½ImYn� for all n [22–26].

This compact formulation of an N -dimensional complex

Gaussian distribution with an Hermitian covariance

matrix thus inherently restricts the applicability of the

model to situations where the noise has this particular

correlation structure [25,27]. In contrast, a 2N -dimen-

sional Gaussian distribution with real variables would
allow any covariance structure of the noise to be mod-

elled. The assumption that the noise is uncorrelated, i.e.,

C ¼ 2r2I, further simplifies the likelihood function (2) to

the familiar form

Lðy;m; r2Þ ¼ 1

r2N ð2pÞN
exp

"
� 1

2r2

XN
j¼1

jyj � mjj2
#
: ð3Þ

This simplified likelihood function provides the basis for

the most commonly encountered ML algorithms used

for estimation of model parameters in NMR spectros-

copy, such as IQML [8,9], EM [4,5], FML [6], RELAX
[10], and AMARES [7] (see also the review articles

[1,12]). The fundamental assumptions regarding the

statistical properties of the noise that lead to Eq. (3) are

evaluated in this paper.

In the following, we first derive the covariance func-

tions of the noise (in a system with a single receiving

coil) before and after low-pass filtering, and study their

dependence on the subsequent digital sampling of the
analog signal (Section 2). Next, we present an experi-

mental study of the statistical properties of measured

NMR spectrometer noise (Section 3). The statistical

methods used in Section 3 and outlined in Appendix A

are also suitable for residual analysis during validation

of the model used for estimation of the NMR parame-

ters. These methods should be equally useful for em-

pirical characterisation of noise in systems with multiple
receiving coils, e.g., in MRI.

2. Theoretical analysis

The derivations presented below are based on a

quadrature detection scheme, as described in [20]. After

splitting the signal into two parallel channels, the real
and imaginary parts of the noise will be perfectly cor-

related, since the splitting merely means that we have the

signal X ðtÞ þ iX ðtÞ, where X ðtÞ is the thermal noise

generated in the sample, coil, and preamplifier [28].

These are the primary sources of noise. Typically, the

noise introduced by the remaining receiver components,

e.g., the analog-to-digital converter, are minor in com-

parison [28,29]—although the situation may be different
with cryogenic probes and very high static magnetic field

strengths. Following cosine modulation of the real part

and sine modulation of the imaginary part, the noise in

continuous time can be written as
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Y ðtÞ ¼ YRðtÞ þ iYIðtÞ
¼ X ðtÞ cosð2pf0tÞ � iX ðtÞ sinð2pf0tÞ;

where f0 denotes the carrier frequency. Assuming ini-

tially for the sake of simplicity that X ðtÞ is white noise

with the Dirac impulse as covariance function, the

modulated complex noise will have covariance function

Cov½YRðtÞ; YIðsÞ� ¼ � cosð2pf0tÞ sinð2pf0sÞdðs� tÞ

¼ � 1

2
sinð4pf0tÞdðs� tÞ;

so that Cov½YRðtÞ; YIðtÞ� oscillates as a sinusoid with

frequency 2f0 (i.e., twice the carrier frequency), and the

corresponding cross-correlation

Corr½YRðtÞ; YIðtÞ� ¼ Cov½YRðtÞ; YIðtÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½YRðtÞ�Var½YIðtÞ�

p
will oscillate between +1 and )1 with the same fre-

quency, as illustrated in Fig. 1. At this point in the
analysis, it does not seem obvious that the real and

imaginary parts of the noise are uncorrelated in either of

the likelihood models (2) and (3). This assumption will

have to be justified by an analysis of the effects of the

subsequent filtering and sampling steps, as outlined

next.

To see what happens to the noise in the real channel,

where the signal is modulated by a cosine wave, we
consider the more general case where X ðtÞ is stationary

real-valued noise (but not necessarily Gaussian or white)
with mean zero, autocovariance function rX ðsÞ ¼
Cov½X ðtÞ;X ðt þ sÞ�, and spectral density RX ðf Þ ¼

R1
�1

rX ðsÞe�i2pf s ds. Further, suppose that the audio filter has

the real-valued impulse response hðtÞ with transfer

function Hðf Þ, so that the output of the filter can be

written as [27,30,31]

ZRðtÞ ¼
Z 1

�1
hðnÞYRðt � nÞdn

¼
Z 1

�1
hðnÞ cos½2pf0ðt � nÞ�X ðt � nÞdn

which is a process with zero mean, so that the autoco-

variance function simplifies to rZR
ðt; sÞ ¼ E½ZRðtÞZRðsÞ�,

which, following the treatment outlined in [30], can be

written as

rZR
ðt; sÞ ¼ 1

4

Z 1

�1
½M
ðf ; tÞ þMð�f ; tÞ�½Mðf ; sÞ

þM
ð�f ; sÞ�RX ðf Þdf ; ð4Þ

where Mðf ; tÞ � ei2pðf�f0ÞtHðf � f0Þ, and the asterisk

denotes complex conjugation. If X ðtÞ is a Gaussian

process, then the output process ZRðtÞ will also be

Gaussian, but since the input noise YRðtÞ is not sta-

tionary we can, in general, not expect the output noise
ZRðtÞ to be stationary. Expanding the part of the inte-

grand that contains the function M , we obtain

Fig. 1. The effect of amplitude modulation of the incoming noise on its correlation properties. Top: the modulating cosine (—) in the real channel and

the corresponding modulating negative sine in the imaginary channel (– – –). Middle: the cross-covariance Cov½YRðtÞ; YIðtÞ�, where YR and YI denote

the noise in the real and imaginary channels, respectively. Bottom: the cross-correlation Corr½YRðtÞ; YIðtÞ�.
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½M
ðf ; tÞ þMð�f ; tÞ�½Mðf ; sÞ þM
ð�f ; sÞ�

¼ ei2pðf�f0Þðs�tÞjHðf � f0Þj2 þ ei2pðfþf0Þðs�tÞjHðf þ f0Þj2

þ ei2p½f ðs�tÞþf0ðsþtÞ�H 
ðf � f0ÞHðf þ f0Þ
þ ei2p½f ðs�tÞ�f0ðsþtÞ�H 
ðf þ f0ÞHðf � f0Þ; ð5Þ

which consists of a (weakly) stationary part (the first

two terms) and, if f0 6¼ 0, a non-stationary part (the last

two terms). In the case that f0 ¼ 0, all terms are equal to

jHðf Þj2ei2pf ðs�tÞ, which corresponds to the usual expres-

sion for filtered stationary noise [30]. However, in

NMR spectroscopy f0 is never zero, but typically in the

radio-frequency range.

Assume that the filter is such that Hðf Þ ¼ 0 when
jf j > fsc, where fsc is the stop-band cut-off frequency of

the filter [32,33], with fsc < f0; typically fsc is in the au-

dio range. Then

H 
ðf � f0ÞHðf þ f0Þ ¼ H 
ðf þ f0ÞHðf � f0Þ ¼ 0

for all frequencies f , so that only the stationary part

passes through the filter. The integral in (4) can then be

simplified (by changing variables and using the fact that

jHðf Þj2 and RX ðf0 � f Þ þ RX ðf0 þ f Þ are even functions

of f , while sin½2pf ðs� tÞ� is an odd function of f ) to yield

rZR
ðt; sÞ ¼ 1

4

Z fsc

�fsc

cos½2pf ðs� tÞ�jHðf Þj2½RX ðf0 � f Þ

þ RX ðf0 þ f Þ�df : ð6Þ
Let us make the further assumptions that the noise X ðtÞ is

white and band-limited with bandwidth fw 6 f0 (corre-

sponding to the bandwidth of the coil resonance circuit),

and has a spectral density which is symmetric about f0,

RX ðf Þ ¼
R0; f0 � fw 6 jf j6 f0 þ fw;
0; otherwise:

�
ð7Þ

If it holds that fw > fsc (i.e., the bandwidth of the noise

is comparably large; this requirement may not be met in

all cases, e.g., with high-Q probes and large oversam-

pling ratios), so that RX ðf0 þ f Þ ¼ RX ðf0 � f Þ ¼ R0 for

jf j < fsc, then the integral in (6) can be simplified to

rZR
ðt; sÞ ¼ R0

2

Z fsc

�fsc

cos½2pf ðs� tÞ�jHðf Þj2 df : ð8Þ

If we assume that the audio filter is ideal, with impulse

response hðtÞ and transfer function

Hðf Þ ¼ H0; jf j6 fsc;
0; jf j > fsc;

�
ð9Þ

then we can easily solve the integral in (8) to get

rZR
ðt; sÞ ¼ R0jH0j2

2

Z fsc

�fsc

cos½2pf ðs� tÞ�df

¼ R0jH0j2
sin½2pfscðs� tÞ�

2pðs� tÞ : ð10Þ

This is the autocovariance function of the noise in con-

tinuous time. The autocovariance of the sampled noise is

obtained by inserting the discrete values of s and t as
determined by the sampling scheme. Since the time lags

s� t between sampling times depend on the sampling

frequency, this means that the correlation structure of the

sampled signal will depend on the sampling frequency

(see Fig. 2). For example, if the sampling frequency is

equal to twice the filter cut-off frequency, fs ¼ 2fsc, then

the autocorrelations of the sampled signal will all be zero

(except at lag zero, where the value is one). In contrast,
deviations from this condition are expected to introduce

a non-negligible correlation structure in the noise.

A common assumption in NMR spectroscopy is that

the noise X ðtÞ is thermal white Gaussian noise (so-called

Johnson noise) [28,34] with spectral density

R0 ¼ 2kBTR; ð11Þ
where kB is the Boltzmann constant, T is the absolute

temperature, and R is the resistance of the coil. If the

values of T , R, and H0 are known, the theoretical au-

tocovariance function (10) can be calculated explicitly.
In particular, the variance of the noise will be

r2
ZR

¼ 2kBTRjH0j2fsc: ð12Þ

A similar analysis as above shows that the sine-modu-

lated noise in the imaginary channel, YIðtÞ ¼ � sin

ð2pf0tÞX ðtÞ, has exactly the same autocovariance func-
tion as the cosine-modulated real part. This is expected

because the input noise X ðtÞ is stationary, and the two

modulating waves differ only in phase.

As an example of a non-ideal filter, we consider the

Butterworth filter, for which explicit formulae are still

manageable. The frequency response of a qth order

Butterworth low-pass filter is defined by the squared

magnitude transfer function [32,33]

jHðf Þj2 ¼ Hðf ÞHð�f Þ ¼ 1

1 þ ðf =fhcÞ2q ; ð13Þ

where fhc is the 3-dB cut-off frequency, at which jHðf Þj2
has reached half its original value. Thus, the But-

terworth filter is completely specified by the filter order
and the 3-dB cut-off frequency (see Fig. 2 for an illus-

tration). The 2q poles of the analytic continuation of

(13) into the complex plane are given by [33]

sk ¼ 2pfhce
ipðqþ2kþ1Þ=2q; k ¼ 0; 1; . . . ; 2q� 1: ð14Þ

Using residue calculus to evaluate the integral (8), and

neglecting the contributions from frequencies in the

stop-band (since for the Butterworth filter the condition

that Hðf Þ ¼ 0 when jf j > fsc does not hold exactly), the

autocovariance function of the cosine-modulated white

noise filtered through a Butterworth filter of order q
and 3-dB cut-off frequency fhc can be found to be ap-

proximately

rZR
ðt; sÞ ¼ ð�1ÞqpR0fhc

Xq�1

k¼0

eskðs�tÞ
Y2q�1

j¼0;j 6¼k

2pfhc

sk � sj
: ð15Þ
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This can also be expressed as a sum of exponentially

damped sinusoids with damping ratio 2pfhc cos½pðqþ
2k þ 1Þ=2q� and frequency 2pfhc sin½pðqþ 2k þ 1Þ=2q�,
where the index k runs from zero to the nearest integer

larger than or equal to q=2 � 1. This is in accord with

other cases where a stochastic process is represented as

filtered white noise [23,35]. Although the zeros of the

autocovariance function of the output noise from a
Butterworth filter do not coincide with the zeros of the

output noise from the ideal filter, the difference seems to

decrease with increasing filter order, and will be negli-

gible (at least for most practical purposes) already for

N ¼ 4, as shown in Fig. 2. Similarly, the difference be-

tween the autocovariance functions of an ideal filter and

a quasi-elliptical 8-pole filter (see Section 3.1) is expected

to be small.
Treating the cross-covariance function along the

same lines, and letting w denote the difference in phase

between the modulating sinusoids in the two channels,

the expression corresponding to (4) becomes

rZR ;ZI
ðt; sÞ ¼ 1

4

Z 1

�1
½M
ðf ; tÞ þMð�f ; tÞ�½e�iwMðf ; sÞ

þ eiwM
ð�f ; sÞ�RX ðf Þdf : ð16Þ

Under the same assumptions concerning the filter as

those made to arrive at Eq. (6), only the stationary

part of the noise passes through the filter, and we

obtain

rZR ;ZI
ðt; sÞ ¼ 1

4
cos w

Z fsc

�fsc

cos½2pf ðs� tÞ�jHðf Þj2


 ½RX ðf0 þ f Þ þ RX ðf0 � f Þ�df

þ 1

4
sin w

Z fsc

�fsc

sin½2pf ðs� tÞ�jHðf Þj2


 ½RX ðf0 þ f Þ � RX ðf0 � f Þ�df : ð17Þ

Thus, provided that the spectral density of the noise is

symmetric around f0 in the interval ½f0 � fsc; f0 þ fsc�,
which was part of the assumption leading to (8), the

second integral vanishes and we get

rZR ;ZI
ðt; sÞ ¼ 1

2
cos w

Z fsc

�fsc

cos½2pf ðs� tÞ�jHðf Þj2


 RX ðf0 þ f Þdf ; ð18Þ

which we recognise as a factor cos w times the autoco-
variance function. In the ideal case of a phase difference

w ¼ p=2 between the modulating sinusoids in the two

channels also this term vanishes, and the real and

imaginary parts of the noise will be uncorrelated at all

times: rZR ;ZI
ðt; sÞ ¼ 0, for all t and s. Notably, this is true

irrespective of the form of the filter transfer function

Hðf Þ within the interval.

Modern high-resolution spectrometers enable the use
of digital filters. The additional signal processing steps

involved, including oversampling, filtering and sub-

sequent ‘‘decimation,’’ require additional consideration

beyond what has been outlined above. Unfortunately,

the details of the digital filter design on commercial

spectrometers are proprietary information, preventing us

at this time from performing an in-depth theoretical

treatment of the noise response to these filters. Of course,
the statistical methods outlined below (Section 3.2 and

Appendix A) may still be applied in order to investigate

empirically the characteristics of digitally filtered noise.

3. Analysis of experimental noise

3.1. Data acquisition

Experimental noise was acquired at room tempera-

ture on a Varian Unity Inova 600 MHz spectrometer,

equipped with a conventional inverse probe. No sample

was inserted into the probe. The receiver gain was ad-

justed to optimise the dynamic range for sampling of the

noise. Data acquisition was performed by gating the

receiver on and sampling a single series of 1024 complex
points in quadrature. The carrier frequency f0 was

599.89 MHz, and the spectral width (i.e., the sampling

frequency fs) was 10,000 Hz. The filter width was either

5000 or 6000 Hz, i.e., the filter 3 dB cut-off was set to

either 2fhc ¼ fs or 2fhc ¼ 1:2fs, the latter of which cor-

responds to commonly used settings in routine spec-

Fig. 2. The theoretical autocorrelation function when the filter 3 dB

cut-off frequency is fhc ¼ 5 kHz (for the ideal filter this is simply the

cut-off frequency). For the ideal filter (—), values taken when the

sampling frequency is equal to twice the filter cut-off frequency,

fs ¼ 2fsc, are denoted by 
. Commonly, the filter width is set to be

10–20% larger than the spectral width, and for the case with

fs ¼ 2fsc=1:2, denoted by �, we have almost a ‘‘worst case scenario.’’

Also shown are the autocorrelation functions of white noise filtered

through Butterworth filters of order two (– –), four (�–�), and eight

(� � �). Inlay: squared magnitude of transfer functions for the same

filters.
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trometer useage. A conventional analog 8-pole quasi-
elliptical filter was used (the standard analog filter on

this type of spectrometer).

3.2. Statistical methods

A large number of tests is available for testing hy-

potheses concerning correlation, independence, and

normality. The tests used in the following data analysis
(see Appendix A) have been chosen with the aim of

providing a systematic approach to the validation of the

assumptions concerning the random noise on which the

statistical model is built. The analysis presented here

may equally well be applied to residual analysis in

connection with model validation.

The tests described in Appendix A can be divided into

tests of a certain hypothesised distribution, tests of
randomness based on combinatorial arguments, and

tests of correlation properties. The latter category can be

subdivided into tests in the time domain that are based

on correlation function estimates, and tests in the fre-

quency domain that are based on spectrum estimates.

The following tests were performed (see Appendix A for

explanations): test of joint normal distribution; test of

marginal normal distribution; tests of randomness; tests
of autocorrelation functions; tests of auto-spectra; test

of cross-correlation function; and test of cross-spectrum.

The computations were performed using Matlab1

(The MathWorks), including the Matlab Statistics

Toolbox [36], the Matlab System Identification Toolbox

[37], and the Matlab Signal Processing Toolbox [38]. No

adjustments were made to account for the fact that

multiple tests were performed on the same data, and it
should be noted that some of the tests rely on the results

of some of the other tests for their validity. For instance,

if the real and imaginary parts of the noise are corre-

lated, then conclusions drawn only from separate anal-

yses of the two parts may be misleading.

3.3. Results

A first picture of the raw data is given in Fig. 3 (the

results in this section are for the case with 2fhc ¼ fs
unless otherwise is explicitly stated). If the complex

observations have a complex Gaussian distribution—

which, as noted in Section 1, means that the real and

imaginary parts are uncorrelated and have equal vari-

ance—with zero mean, then the cloud of points in Fig. 3

should be fairly circularly symmetric with the largest
density around the origin. It seems that the cloud has its

centre somewhat towards the southwest, indicating a

non-zero mean that arises because the channels are not

perfectly balanced. This rather common effect is also

discernible in the separate plots of the real and imagi-
nary parts of the time series in Fig. 3. The observed

offset suggests that the model interferogram (1) should

include this term, unless it is removed by a suitable

phase cycling scheme, e.g., CYCLOPS [39].

The probability plots in Fig. 4 can be used to evaluate

the assumption of a Gaussian distribution. If the data

are normally distributed, but perhaps with a non-zero

mean, then—after centering of the data—the absolute
values of the observations should follow a Rayleigh

distribution, and the angles of the complex observations

should follow a uniform distribution over the interval

½�p; p�. The two probability plots in Fig. 4 do not show

any striking deviations from what would be expected

under the hypothesis of normally distributed data. Table

1 presents the p-values from the tests described in Ap-

pendix A.1 applied to the experimental data. It can be
seen that the Kolmogorov–Smirnov test of the hypoth-

esis that the absolute values follow a Rayleigh distri-

bution gives no reason to reject the hypothesis on the 5%

level of significance. Neither does the test of the hy-

pothesis that the angles follow a uniform distribution

give any reason to reject this hypothesis.

Figs. 5 and 6 offer a possibility to evaluate if there is

any correlation between the real and imaginary parts of
the signal. The estimated cross-correlation functions in

Fig. 5 do not show such systematic deviations that there

is reason to reject the hypothesis that the real and

imaginary parts of the signal are uncorrelated (Appendix

A.6). Since 39 lags are included in the plot, we would

expect about two (i.e., 5% of 39) cross-correlation values

to fall outside the 5% critical bounds. The squared

coherency spectrum estimate (Appendix A.7) in Fig. 6
does not show any signs of any systematic connection

between the real and imaginary parts of the signal—the

smoothed estimate lies well below the estimated 5%

critical bound. If we consider it sufficiently established

that the real and imaginary parts of the signal are inde-

pendent, we can proceed to study them separately.

The autocorrelation function estimates for the case

when 2fhc ¼ fs in Fig. 5 do not give any reason to reject
the hypothesis that each of the two time series (the real

part and the imaginary part of the signal, respectively) is

a series of uncorrelated observations (Appendix A.4).

Since the plots cover 19 lags, we should expect about

one autocorrelation value to fall outside the 5% critical

bounds. A portmanteau test comprising the 32 first lags

of the autocorrelation function for the real and imagi-

nary parts, respectively, does not give any reason to
reject the hypothesis that the noise in each of the two

channels consists of independent identically distributed

observations (see Table 1). For the case when

2fhc ¼ 1:2fs the autocorrelation function estimates in

Fig. 5 show a significant and systematic deviation from

zero for the first lag, which is in accord with the theo-

retical prediction (see Fig. 2).1 M-files are available from HG on request.
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Concerning the randomness of the sequences, the

turning points test and the difference-sign test (Appendix

A.3) applied to the real and imaginary parts give p-values

well above any reasonable level of significance for the

case with 2fhc ¼ fs, but for the case with 2fhc ¼ 1:2fs the

turning points test indicates that the observed number of

turning points significantly exceeds the number expected
for an IID sequence. To avoid ties, in the case with

2fhc ¼ fs, 20 observations were removed from the real

part of the signal and 15 observations were removed from

the imaginary part, and in the case with 2fhc ¼ 1:2fs, 11

and 17 observations, respectively, were removed.

The histogram and normal probability plot for the

imaginary part of the noise in Fig. 7 do not show any

large deviations from the normal distribution, and the

Kolmogorov–Smirnov test of the normality hypothesis

(Appendix A.2) does not show significance (Table 1).

Similar graphs and test results are obtained for the real

part of the noise. The p-values from t tests of the hy-
pothesis that the mean of the signal in each channel is

zero are given in Table 1. The conclusion is that both

means are significantly different from zero. Also, the

hypothesis that the two means are equal must be re-

jected. Bartlett�s test of the hypothesis that the two

Fig. 3. Left: the complex observations represented in polar coordinates. Top right: the real part of the signal. Bottom right: the imaginary part of the

signal.

Fig. 4. Left: Rayleigh probability plot of the absolute values of the centred complex observations. Right: uniform probability plot of the angles of the

centred complex observations. Critical bounds for a ¼ 0:05 and a ¼ 0:01 are also shown in the figures.
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normal distributions have the same variance does not

lead to rejection on the 5% level.

The spectral estimates for the imaginary part of the

noise for the case when 2fhc ¼ fs in Fig. 8 indicate that it

has a rather constant spectral density, and the cumula-

tive periodogram with critical bounds based on the

Kolmogorov–Smirnov test (Appendix A.5) does not give

any reason to reject the hypothesis of white Gaussian

noise on the 5% level (the p-values are shown in Table 1).

On the other hand, the corresponding plots in Fig. 9 for

the case when 2fhc ¼ 1:2fs do give reason to reject the

hypothesis of white Gaussian noise. Similar graphs and

test results are obtained for the real part of the noise.

4. Conclusions

The theoretical and experimental analyses presented

here address the common assumption that the noise in a

Table 1

Summary of test results

Test p-value

fs 1:2fs

Joint normal distribution Rayleigh distribution radii 0.99 0.76

Uniformly distributed angles 0.87 0.93

Portmanteau Real part 0.81 0.25

Imaginary part 0.40 0.20

Turning points Real part 0.14 0.01

Imaginary part 0.37 0.05

Difference sign Real part 0.93 0.89

Imaginary part 0.90 0.95

Marginal normal distribution Real part 0.85 1.00

Imaginary part 0.84 0.99

Cumulative periodogram Real part 0.28 0.00

Imaginary part 0.06 0.00

Zero mean Real part 0.00 0.00

Imaginary part 0.00 0.00

Equal means 0.00 0.00

Equal variances 0.46 0.08

The column headed fs refers to the case with 2fhc ¼ fs and the column headed 1:2fs refers to the case with 2fhc ¼ 1:2fs.

Fig. 5. Estimated correlation functions pertaining to the two channels

of the quadrature detection. The sampling interval is Dt ¼ 0:1 ms. The

autocorrelation functions have been estimated for a span of the time

lag up to 2 ms, and the cross-correlation function has been estimated

for a lag span of 4 ms. (—) Represents the case with 2fhc ¼ fs and (– � –)

represents the case with 2fhc ¼ 1:2fs. Top: autocorrelation function for

the real part of the signal. Middle: autocorrelation function for the

imaginary part of the signal. Bottom: cross-correlation function for the

real and imaginary parts. Approximate point-wise critical bounds (- - -)

for a ¼ 0:05 are also shown.

Fig. 6. Plot of the estimated squared coherency spectrum for the real

and imaginary part of the signal. The estimates have been smoothed

with a Hamming window of lag size 256 and 30, respectively. The

critical bounds for the more smoothed estimate are also shown, with

a ¼ 0:05 and a ¼ 0:01.
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Fig. 7. Plots for the imaginary part of the signal. Left: histogram and estimated Gaussian density. Right: normal probability plot with critical bounds

for a ¼ 0:05 and a ¼ 0:01.

Fig. 9. Plots for the imaginary part of the signal for the case when 2fhc ¼ 1:2fs. Left: raw periodogram and smoothed spectral estimate with

2r-bounds. Right: normalised cumulative periodogram with critical bounds for a ¼ 0:05 and a ¼ 0:01.

Fig. 8. Plots for the imaginary part of the signal for the case when 2fhc ¼ fs. Left: raw periodogram and smoothed spectral estimate with 2r-bounds.

Right: normalised cumulative periodogram with critical bounds for a ¼ 0:05 and a ¼ 0:01.
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complex NMR signal acquired from a single receiving
coil using quadrature detection is uncorrelated (white)

and Gaussian. The theoretical analysis is based on the

assumption that the dominant noise source is the ther-

mal noise generated by the sample, coil, and preampli-

fier, and that it can be adequately modelled as white

noise. By analysing the signal processing steps prior to

digital sampling of the signal, we show that certain

conditions have to be met for the sampled complex noise
to be white with uncorrelated real and imaginary parts.

If the noise is white, with a symmetric spectral density

centred at the mixing frequency, and band-limited with

a band-width greater than the stop-band cut-off fre-

quency of the audio filter, the noise in the two channels

will be uncorrelated at all times, i.e., Cov½ReYm;
ImYn� ¼ 0 for all m and n, provided that the phase dif-

ference between the two modulating sinusoids is exactly
p=2. Under the same assumptions, the autocovariance

function for the noise in each channel will be a sinc

function in the case of an ideal filter. The shape of this

sinc function implies that sampling with a frequency of

fs ¼ 2fhc=n, where n is an integer, yields uncorrelated

noise in each channel. In contrast, any other ratio be-

tween the sampling and filter frequencies is expected to

introduce correlations in the noise sequences. When a
Butterworth filter of even order is used, the autoco-

variance function of the filtered noise can be well ap-

proximated by a sum of exponentially damped sinusoids

which will have zeros in good agreement with the sinc

function. Statistical analyses of experimental noise ob-

tained using a standard analog filter (an 8-pole quasi-

elliptical filter) bear out the theoretical predictions: noise

sampled at twice the filter cut-off frequency (i.e.,
fs ¼ 2fhc) is shown to be white; in contrast, noise sam-

pled using a 20% larger filter width (i.e., 1:2fs ¼ 2fhc) is

shown to be significantly non-white. Of note, it is

common practice to use a filter width that reaches 10–

20% outside of the spectral width when analog filters are

used. The analysis presented here suggests that if the

application in question requires that the sampled noise is

white, it would be better to use a filter cut-off frequency
of 2fhc ¼ fs, while adjusting fs such that distortions due

to the filter are avoided in the spectral region of interest.

Regarding parameter estimation using maximum

likelihood methods, the ML estimator will still be a least-

squares estimator, and hence well motivated from a

statistical point of view, even if the noise is not perfectly

uncorrelated. However, in case the noise is actually

correlated, an ML estimator based on the assumption of
uncorrelated noise will be less efficient (i.e., have larger

variance) than an ML estimator that explicitly models

the noise correlation. A more serious problem is that

parameter estimate confidence intervals computed under

a false assumption of uncorrelated noise may be mis-

leading, and hence—in the worst case—underestimate the

uncertainty of the estimates. The consequences of such

correlations will have to be investigated for the individ-
ual case. Model validation in connection with NMR

signal estimation may be performed by analysing the

residuals; an adequate model is expected to yield resid-

uals that have the same statistical characteristics as the

noise specified in the model. The procedures outlined

here enable efficient analysis of residuals in this respect,

and should be of general use in ML-based methods for

parameter estimation of NMR signals.
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Appendix A. Statistical tests

A.1. Test of joint normal distribution

A zero mean bivariate normal variable Z ¼ ðX ; Y Þ
with X and Y uncorrelated with equal variances,

r2
X ¼ r2

Y ¼ r2 can be expressed in polar coordinates as
Z ¼ ðR cos h;R sin hÞ where the radius R has a Rayleigh

distribution with scale parameter r and the angle h is

uniformly distributed on the interval ½�p; p� [27]. This

can be used to check if the real and imaginary parts of

the noise are independent and jointly Gaussian: if the

hypothesis that the angles of the complex observations

are uniformly distributed in the interval ½�p; p� is true,

then the empirical cumulative distribution function
should follow a straight line in a uniform probability

plot, without any systematic or extreme deviations. (For

the general concepts of probability plotting and its use

for examining goodness-of-fit see, e.g. [40].) Since the

distribution is fully specified by the null hypothesis,

critical bounds based on the Kolmogorov–Smirnov test

can be applied directly and the p-value can be calculated

[41]. These bounds are constructed so that there is a
probability 1 � a that the empirical distribution function

lies entirely within the bounds.

In a similar way, a probability plot can be con-

structed to test the hypothesis that the absolute values of

the complex observations come from a Rayleigh distri-

bution. In this case, since the scale parameter r of the

distribution is not specified by the null hypothesis, a

modification of the Kolmogorov–Smirnov test will have
to be applied, using the ML estimate of the unknown

parameter and appropriate critical values [42]. The

critical bounds thus obtained are interpreted in the same

way as in the previous case. In this case there is no
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formula available for the calculation of the p-value, so it
has been estimated using the bootstrap method with

1000 bootstrap samples [43].

A.2. Test of marginal normal distributions

The assumption that the real and imaginary parts of

the signal each are independently and normally distrib-

uted sequences can be checked further with a normal
probability plot for each part. Since the mean and var-

iance of the distribution are not specified by the null

hypothesis, a Kolmogorov–Smirnov–Lilliefors test

with the ML estimates of the unknown parameters can

be used to obtain critical bounds for the empirical

distribution function [41,44]. The p-values have been

estimated using bootstrap with 1000 bootstrap samples

[43].

A.3. Tests of randomness

One way to test the randomness of a sequence is to

count the number of peaks and troughs, collectively

called turning points, of the series. If T is the number of

turning points of the sequence then, under the null hy-

pothesis of an IID sequence, the expected number of
turning points lT and the variance r2

T of T can be

computed. If the observed value of T is much greater

than lT this indicates that the series is fluctuating more

rapidly than would be expected for a random series. A

value of T much smaller than lT would indicate a more

slowly varying series with positive correlations between

neighbouring points. This can be tested more formally

with a test based on the fact that T is asymptotically
normal with parameters lT and r2

T when the null hy-

pothesis is true [22,45].

Since the test based on the turning points has a

poor performance as a test against trend, it could

preferably be accompanied by, for instance, a differ-

ence-sign test. If S is the number of points of increase

of the series, i.e., the number of positive first differ-

ences of the series, then, for an IID sequence, the
expectation lS and variance r2

S of S can be computed,

and it can be shown that S is asymptotically normal

with lS and r2
S as parameters [22,45]. This implies that

the null hypothesis of an IID sequence can be formally

tested. If the observed value of S is much greater than

lS , this indicates an increasing trend in the data, while

a value of S much smaller than lS indicates a de-

creasing trend.
The turning points and difference-sign tests presup-

pose that the observations have a continuous distribu-

tion, so that the probability that two or more

consecutive observations are equal (ties) is zero. When

the observations are digitised, they will also be discre-

tised, which means that the conditions for these two

tests are not satisfied in a strict sense. But as long as the

number of ties is small compared with the total number
of observations, it seems reasonable to apply the tests, if

the ties are removed from the data (i.e., if two or more

consecutive observations are equal, all of these obser-

vations except the first one are removed).

A.4. Tests of autocorrelation functions

If the data is a realisation of an IID noise process,
approximately 0.95 of the sample autocorrelations

should lie between the critical bounds �1:96=
ffiffiffiffi
N

p
, based

on a large sample normal approximation [22]. As a

complement to this point-wise procedure, where each

correlation is checked individually, a portmanteau test

can be used, considering instead a single overall statistic

which depends on all estimated correlations q̂qðiÞ in a

given interval 16 i6m. If the hypothesis of IID noise is
correct, this test statistic will have an asymptotic (as

N ! 1) v2 distribution with the number of degrees of

freedom equal to the number of correlations considered

[22,35]. If the mean is found to be significantly different

from zero and is subtracted from the series before the

test, this should be adjusted for by reducing the number

of degrees of freedom by one.

A.5. Tests of auto-spectra

In the complementary frequency analysis, the raw

periodograms have been computed as the absolute

square of the FFT of the time series, normalised by

multiplication with the sampling interval [26]. The

spectral estimates are based on the estimated covariance

functions, which have been multiplied by a Hamming
window of lag size 30 and then Fourier transformed [26].

An even more effective means for the detection of peri-

odicities in the data may be provided by the cumulative

periodogram, which can be combined with the Kol-

mogorov–Smirnov test to check the hypothesis of

Gaussian white noise. The cumulative periodograms

have been calculated for the maximal number of fre-

quencies, i.e., N=2 ¼ 512. There is a probability 1 � a
that the estimated normalised cumulative periodogram

lies entirely within the critical bounds based on the

Kolmogorov–Smirnov test [22,31,35].

A.6. Test of cross-correlation function

An approximate test for the independence of the two

time series constituting, respectively, the real and the
imaginary part of the complex signal, can be obtained

by prewhitening one of them before estimating the

cross-correlations and then comparing these with the

same point-wise critical values as for the above auto-

correlation analysis [22]. For the prewhitening proce-

dure an auto-regressive (AR) filter of order 10 has been

used [22,26,31,35].
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A.7. Test of cross-spectrum

In a frequency analysis of the relation between two

time series, one possibility is to inspect the squared co-

herency spectrum, which is defined as

j2ðf Þ ¼ jRZR ;ZI
ðf Þj2

RZR
ðf ÞRZI

ðf Þ ; ðA:1Þ

where RZR
ðf Þ and RZI

ðf Þ are the spectral densities of the

real and imaginary parts of the signal, respectively, and
RZR ;ZI

ðf Þ is the corresponding cross-spectral density. The

coherency spectrum can, roughly speaking, be viewed as

a correlation coefficient in the frequency domain

[22,26,31]. The squared coherency spectrum has been

estimated using Welch�s averaged periodogram method

[26], applying a Hamming window of lag size 256 as well

as a more smoothed version with a window of lag size 30.

For the more smoothed estimate critical bounds have
been estimated by a Monte Carlo simulation with 1000

replicates, based on the hypothesis that ZR and ZI are

uncorrelated and each consists of white Gaussian noise.

Thus, if this hypothesis is correct, there is approximately

probability 1 � a that the estimated squared coherency

spectrum lies entirely below the bound.
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